2.2: Describing Sets

Definition: Aset is any collection of objects with no repetitions. An object in a set is said to be an element of the set. One way to write a set is to list them in

{ } with commas in between the elements.

is an element of

Notation: If A is a set and a is an element of A, we write $a \in A$. If b is not an element of A, we write $b \notin A$.

Example: Write the set of the first five counting numbers and give examples of

elements in and not in the set.

{1,2,3,4,5}=A 3EA IEA 6¢A 0¢A -3¢A JITEA TEA

Definition: (Set builder notation) Let S be a set. Then we can write $S = \{x \mid x \text{ satisfies some conditions}\}$. This is read 'S equals the set of elements x such that x satisfies some conditions".

Another way to think of set builder notation is {form of elements | conditions}. This will show up more in the examples.

Example: Write $S = \{1, 2, 3, 4, 5\}$ in set builder notation.

{x|x is one of the first 5 counting numbers}

Definition (Special Sets):

(1) The Natural Numbers: $\mathbb{N} = \{1, 2, 3, 4, ...\}$ (2) The Integers: $\mathbb{Z} = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$ (3) The Real Numbers: $\mathbb{R} = \{x \mid x \text{ is any number that carrier written as a decimal}\}$

Example: Describe the elements of the following sets.

(a)
$$\{3x \mid x \in \mathbb{Z}\}$$
 all multiples of 3
 $\{2, ..., -9, -6, -3, 0, 3, 6, 9, ..., 3\}$
(b) $\{-x \mid x \in \mathbb{N}\}$
 $\{-1, -2, -3, -4, ...\}$

(c)
$$\{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}$$

all fractions (positive and negative)

(d)
$$\{x^2 \mid x \in \mathbb{N}\}$$

$$\{1^2, 2^2, 3^2, 4^2, \ldots\} = \{1, 4, 9, 16, \ldots\}$$

Definition: Two sets are equal if they contain exactly the same elements in any order.

Definition: The cardinal number of a set S, denoted n(S) or |S|, is the number of elements of S.

Definition: The empty set denoted \emptyset , is the set with no elements. The empty set can also be written as { }.

Definition: A set is afinite set if the cardinal number of the set is 0 or a natural number. A set with infinitely many elements, such as the natural numbers, is called an infinite set

Example: Find the cardinal number of $A = \{1, 2, 3, 4\}, B = \{0\},$ $C = \{2, 4, 6, 8, ...\}$, and \emptyset .

$$n(A)=4$$
 $n(B)=1$ $n(C)=\infty$

$$n(B)=1$$

$$n(\phi)=0$$

Example: Find the cardinal number of the following sets.

(a)
$$S = \{1, 4, 7, 10, 13, ..., 40\}$$
 $d = common difference$ $\frac{40-1}{3}+1$ $n = \frac{last \#-first \#}{d}+1$ $n = \frac{last \#-first \#}{d}$

(b)
$$T = \{33, 37, 41, 45, 49, ..., 353\}$$

$$\frac{353-33}{4}+|=\frac{320}{4}+|=8|$$

$$n(T)=[8]$$

Definition: The <u>universal set</u>, denoted U, is the set of all elements being considered in a given discussion.

Definition: The <u>complement</u> of a set S, denoted \overline{S} , is the set of all elements in U that are not in S. That is, $\overline{S} = \{x \mid x \in U \text{ and } x \notin S\}$.

A complement can be thought of in the following manner. The shaded region is \overline{S} :

Example: If $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, find the complements of $A = \{2, 4, 6, 8\}$ and $B = \{1, 2, 4, 6, 7\}$.

$$\overline{A} = \{1, 7, 3, 5\}$$

 $\overline{B} = \{3, 5, 8\}$

Definition: If A and B are sets, we say that A is a <u>subset</u> of B, denoted $A \subseteq B$, if every element of A is an element of B. If $A \subseteq B$ and $A \neq B$, we say that A is a <u>proper subset</u> of B, denoted $A \subseteq B$.

A subset can be thought of in the following manner. In the figure $A \subseteq B$:

Example: Fill in the blanks with either \subseteq or $\not\subseteq$.

Example: Fill in the blanks with either \in , $\not\in$, \subseteq , or $\not\subseteq$.

$$\{2\} \stackrel{\boldsymbol{\xi}}{\underline{\boldsymbol{\xi}}} \{1,2,3\} \qquad 0 \not\in \mathbb{N}$$

$$2 \not\in \{1,2,3\} \qquad \mathbb{Z} \not\notin \mathbb{N} = \mathbb{Z} \text{ contains } 0 \text{ and negatives}$$

$$5 \not\in \{1,2,3,4\} \qquad 5 \not\in \{2x \mid x \in \mathbb{Z}\} = \text{all even integers}$$

$$\emptyset \stackrel{\boldsymbol{\xi}}{\underline{\boldsymbol{\xi}}} \{1\} \qquad \mathbb{R} \stackrel{\boldsymbol{\xi}}{\underline{\boldsymbol{\xi}}} \mathbb{R}$$

$$\{a/b \mid a,b \in \mathbb{Z},b \neq 0\} \stackrel{\boldsymbol{\xi}}{\underline{\boldsymbol{\xi}}} \mathbb{R}$$

$$\{4\} \not\in \{2\} \qquad \{1.5\} \not\in \mathbb{N} \qquad \{1.5\} \not$$

First item: if it is a set, use = or \$\frac{4}{if it is a number, use \in or \$\phi\$